Solutions De Viscosité D'´ Equations Elliptiques Et Paraboliques Non Linéaires Table Desmatì Eres
نویسنده
چکیده
Ces notes sont issues d'un cours de DEA enseignéà Rennes fin 2003. 4 Preuve du principe de comparaison pour le premier ordre 16 5 Preuve du principe de comparaison pour le second ordre 18 5.
منابع مشابه
Convexity of solutions and C1,1 estimates for fully nonlinear elliptic equations
The starting point of this work is a paper by Alvarez, Lasry and Lions (1997) concerning the convexity and the partial convexity of solutions of fully nonlinear degenerate elliptic equations. We extend their results in two directions. First, we deal with possibly sublinear (but epi-pointed) solutions instead of 1-coercive ones; secondly, the partial convexity of C2 solutions is extended to the ...
متن کاملStochastic representations of derivatives of solutions of one dimensional parabolic variational inequalities with Neumann boundary conditions
In this paper we explicit the derivative of the flows of one dimensional reflected diffusion processes. We then get stochastic representations for derivatives of viscosity solutions of one dimensional semilinear parabolic partial differential equations and parabolic variational inequalities with Neumann boundary conditions. Key-words: Reflected backward stochastic differential equations, semili...
متن کاملNonlinear methods for linear equations and numerical schemes
This paper presents some methods for the study of linear elliptic equations. These methods, now classical, are essentially due to G. Stampacchia. The second part of the paper is devoted to the possible use of these methods for the study of numerical schemes for these linear elliptic equations. RÉSUMÉ. Cet article présente tout d'abord des méthodes non linéaires pour l'étude d'équations elliptiq...
متن کاملExistence and Uniqueness to the Cauchy Problem for Linear and Semilinear Parabolic Equations with Local Conditions
We consider the Cauchy problem in R for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The line...
متن کاملMorrey Global Bounds and Quasilinear Riccati Type Equations below the Natural Exponent
We obtain global bounds in Lorentz-Morrey spaces for gradients of solutions to a class of quasilinear elliptic equations with low integrability data. The results are then applied to obtain sharp existence results in the framework of Morrey spaces for Riccati type equations with a gradient source term having growths below the natural exponent of the operator involved. A special feature of our re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004